Sponsors

Senin, 22 Juli 2019

GARIS DAN SUDUT

Kedudukan Dua Garis (Sejajar, Berpotongan, Berimpit, dan Bersilangan)

Dua garis sejajar 
Pernahkah Anda memerhatikan rel atau lintasan kereta api? Apabila kita perhatikan lintasan kereta api tersebut, jarak antara dua rel akan selalu tetap (sama) dan tidak pernah saling berpotongan antara satu dengan lainnya. Apa yang akan terjadi jika jaraknya berubah? Apakah kedua rel itu akan berpotongan?
Berdasarkan gambaran tersebut, selanjutnya apabila dua buah rel kereta api kita anggap sebagai dua buah garis, maka dapat kita gambarkan seperti gambar di bawah ini.
Garis m dan garis n di atas, jika diperpanjang sampai tak berhingga maka kedua garis tidak akan pernah berpotongan. Keadaan seperti ini dikatakan kedua garis sejajar. Dua garis sejajar dinotasikan dengan “//”.  

Dua garis atau lebih dikatakan sejajar apabila garis-garis tersebut terletak pada satu bidang datar dan tidak akan pernah bertemu atau berpotongan jika garis tersebut diperpanjang sampai tak berhingga.
Dua garis berpotongan 
Agar Anda memahami pengertian garis berpotongan, perhatikan gambar di bawah ini.

Gambar di atas tersebut menunjukkan gambar kubus ABCD.EFGH. Amatilah garis AB dan garis BC. Tampak bahwa garis AB dan BC berpotongan di titik B dimana keduanya terletak pada bidang ABCD. Dalam hal ini garis AB  dan BC dikatakan saling berpotongan.
Dua garis dikatakan saling berpotongan apabila garis tersebut terletak pada satu bidang datar dan mempunyai satu titik potong.
Dua garis berimpit
Agar Anda memahami pengertian garis berimpit, perhatikan gambar di bawah ini.
Pada Gambar di atas menunjukkan garis AB dan garis CD yang saling menutupi, sehingga hanya terlihat sebagai satu garis lurus saja. Dalam hal ini dikatakan kedudukan masing-masing garis AB dan CD terletak pada satu garis lurus. Kedudukan garis yang demikian dinamakan pasangan garis yang berimpit. 

Dua garis dikatakan saling berimpit apabila garis tersebut terletak pada satu garis lurus, sehingga hanya terlihat sebagai satu garis lurus saja.
Dua garis bersilangan 
Agar Anda memahami pengertian garis bersilangan, perhatikan gambar di bawah ini.
Gambar di atas menunjukkan sebuah balok ABCD.EFGH. Perhatikan garis AC dan garis HF. Tampak bahwa kedua garis tersebut tidak terletak pada satu bidang datar. Garis AC terletak pada bidang ABCD, sedangkan garis HF terletak pada bidang EFGH. Selanjutnya apabila kedua garis tersebut, masing-masing diperpanjang, maka kedua garis tidak akan pernah bertemu. Dengan kata lain, kedua garis itu tidak mempunyai titik potong. Kedudukan garis yang demikian dinamakan pasangan garis yang saling bersilangan.

Dua garis dikatakan bersilangan apabila garis-garis tersebut tidak terletak pada satu bidang datar dan tidak akan berpotongan apabila diperpanjang.
 
Garis Horizontal dan Garis Vertikal
Perhatikan gambar di bawah ini. 

Gambar tersebut menunjukkan sebuah neraca dengan bagian-bagiannya. Perhatikan bagian tiang penyangga dan bagian lengan yang berada di atasnya. Kedudukan bagian tiang dan lengan tersebut menggambarkan garis horizontal dan vertikal. Bagian lengan menunjukkan kedudukan garis horizontal, sedangkan tiang penyangga menunjukkan kedudukan garis vertikal. Arah garis horizontal mendatar, sedangkan garis vertikal tegak lurus dengan garis horizontal.

Sifat-Sifat Garis Sejajar

Pada gambar di bawah ini, melalui dua buah titik yaitu titik A dan titik B dapat dibuat tepat satu garis, yaitu garis m. Selanjutnya, apabila dari titik C di luar garis m dibuat garis sejajar garis m yang melalui titik tersebut, ternyata hanya dapat dibuat tepat satu garis, yaitu garis n.
Berdasarkan uraian di atas, secara umum diperoleh sifat sebagai berikut. Melalui satu titik di luar sebuah garis dapat ditarik tepat satu garis yang sejajar dengan garis itu. 
Selanjutnya perhatikan gambar di bawah ini. Pada gambar di bawah diketahui garis m sejajar dengan garis n (m // n) dan garis l memotong garis m di titik P. Apabila garis l yang memotong garis m di titik P diperpanjang maka garis l akan memotong garis n di satu titik, yaitu titik Q. 
Jika sebuah garis memotong salah satu dari dua garis yang sejajar maka garis itu juga akan memotong garis yang kedua.
Sekarang, perhatikan Gambar di bawah ini. Pada gambar tersebut, mula-mula diketahui garis k sejajar dengan garis l dan garis m. Tampak bahwa garis k sejajar dengan garis l atau dapat ditulis k // l dan garis k sejajar dengan garis m, ditulis k // m. Karena k // l dan k // m, maka l // m. Hal ini berarti bahwa garis l sejajar dengan garis m.

Jika sebuah garis sejajar dengan dua garis lainnya maka kedua garis itu sejajar pula satu sama lain.

Perbandingan Segmen Garis

Pada dasarnya materi perbandingan segmen garis hampir sama dengan perbandingan senilai atau seharga yang sudah diulas pada Materi matematika kelas VII Semester Ganjil pada postingan yang berjudul Cara Menghitung Perbandingan Seharga (senilai).

Sebuah garis dapat dibagi menjadi n bagian yang sama panjang atau dengan perbandingan tertentu. Perhatikan Gambar di bawah ini.


Gambar tersebut menunjukkan garis PQ dibagi menjadi 5 bagian yang sama panjang, sehingga PK = KL = LM = MN = NQ. Jika dari titik K, L, M, N, dan Q ditarik garis vertikal ke bawah, sedemikian sehingga PA = AB = BC = CD = DE maka diperoleh sebagai berikut.
  1. PM : MQ = 3 : 2
    PC : CE = 3 : 2

    maka

    PM : MQ = PC : CE

  2. QN : NP = 1 : 4
    ED : DP = 1 : 4

    maka,

    QN : NP = ED : DP

  3. PL : PQ = 2 : 5
    PB : PE = 2 : 5

    maka

    PL : PQ = PB : PE

  4. QL : QP = 3 : 5
    EB : EP = 3 : 5

    maka:

    QL : QP = EB : EP
Berdasarkan uraian tersebut, secara umum dapat disimpulkan sebagai berikut. Pada Δ ABC di bawah ini berlaku perbandingan sebagai berikut.
  1. AD : DB = AE : EC atau AD/ DB = AE / EC
  2. AD : AB = AE : AC atau AD / AB = AE / AC
  3. BD : DA = CE : EA atau BD / DA  = CE / EA
  4. BD : BA = CE : CA atau BD / BA  = CE / CA
  5. AD : AB = AE : AC = DE : BC atau AD / AB = AE / AC = DE / BC
Contoh soal tentang perbandingan garis

Pada gambar di atas, diketahui QR // TS. Jika PR = 15 cm, PQ = 12 cm,
dan PS = 10 cm, tentukan
  1. panjang PT;
  2. perbandingan panjang TS dan QR.
  3.  
Penyelesaian:
  1. PS/PR = PT/PQ
    10 cm/15 cm = PT / 12 cm

    PT = 10x 12/15 cm

    PT = 120 cm/15

    PT = 8 cm

    Jadi, panjang PT = 8 cm.

  2. PT / PQ = TS/QR
    8/12 = TS/QR

    2/3 = TS/QR

    Jadi, TS : QR = 2 : 3.

Pengertian Sudut dan Besar Sudut

Mungkin Anda tidak asing dengan istilah "sudut". Misalnya anda mengarahkan lemparan anda dengan sudut lempara 20 derajat. Tahukah anda apa pengertian sudut? 

Pengertian Sudut 
Agar kalian dapat memahami pengertian sudut, coba amati ujung sebuah meja, pojok sebuah pintu, atau jendela, berbentuk apakah ujung tersebut? Ujung sebuah meja atau pojok pintu dan jendela adalah salah satu contoh sudut. 
Sekarang perhatikan gambar di bawah ini. Suatu sudut dapat dibentuk dari suatu sinar yang diputar pada pangkal sinar. Sudut ABC pada gambar di samping adalah sudut yang dibentuk BC yang diputar dengan pusat B sehingga BC berputar sampai BA 
Ruas garis BA dan BC disebut kaki sudut, sedangkan titik pertemuan kaki-kaki sudut itu disebut titik sudut. Daerah yang dibatasi oleh kaki-kaki sudut, yaitu daerah ABC disebut daerah sudut. Untuk selanjutnya, daerah sudut ABC disebut besar sudut ABC. Sudut dinotasikan dengan “ ° ”. Sudut pada Gambar di atas dapat diberi nama
a. sudut ABC atau ABC;
b. sudut CBA atau CBA;
c. sudut B atau B.

Dengan demikian, dapat dikatakan bahwa sudut adalah daerah yang dibentuk oleh pertemuan antara dua buah sinar atau dua buah garis lurus.
Besar Sudut 
Besar suatu sudut dapat dinyatakan dalam satuan derajat (°), menit (), dan detik (). Perhatikan jarum jam pada sebuah jam dinding. Untuk menunjukkan waktu 1 jam, maka jarum menit harus berputar 1 putaran penuh sebanyak 60 kali, atau dapat ditulis 1 jam = 60 menit. Adapun untuk menunjukkan waktu 1 menit, jarum detik harus berputar 1 putaran penuh sebanyak 60 kali, atau dapat ditulis 1 menit = 60 detik. 
Hal ini juga berlaku untuk satuan sudut. Hubungan antara derajat (°), menit (), dan detik () dapat dituliskan sebagai berikut.
1° = 60’ atau 1’ = (1/60)°
1’ = 60” atau 1” = (1/60)’
1° = 60 x 60” = 3.600” atau 1’ = (1/3.600)°
Contoh soal
Tentukan kesamaan besar sudut berikut.
  1.  5o ° =  ...
  2. 8’ = ...
  3. 45,6o ° =  ...o ...
  4. 48°48’ = ...o
Penyelesaian:
  1. Karena 1° = 60maka 5° = 5 x 60 = 300
  2. Karena 1’ = 60 maka 8’ = 8 x 60” = 480
  3. 45,6° = 45° + 0,6°
    45,6° = 45° + (0,6 x 60’)
    45,6° = 45° + 36’
    45,6° = 45°36’

  4. 48°48’ = 48° + 48’
    48°48’ = 48° + (48/60)°
    48°48’ = 48° + 0,8°
    48°48’ = 48,8°
     

    Jenis-Jenis Sudut

    Secara umum, kita mengenal ada lima jenis sudut, adapun kelima jenis sudut tersebut adalah sebagai berikut
    1. sudut siku-siku;
    2. sudut lurus;
    3. sudut lancip;
    4. sudut tumpul;
    5. sudut refleks.
    Perhatikan sudut yang dibentuk oleh kedua jarum jam jika jam menunjukkan pukul 9.00. Ternyata pada pukul 9.00, kedua jarum jam membentuk sudut siku-siku. Sudut siku-siku adalah sudut yang besarnya 90°. 

    Sekarang, putarlah jarum jam pendek ke angka 6, dengan jarum jam panjang tetap di angka 12. Tampak bahwa kedua jarum jam membentuk sudut lurus. Jika kalian perhatikan, sudut lurus dapat dibentuk dari dua buah sudut siku-siku yang berimpit. Sudut lurus adalah sudut yang besarnya 180°. 

    Selain sudut siku-siku dan sudut lurus, masih terdapat sudut yang besarnya antara 0° dan 90°, antara 90° dan 180°, serta lebih dari 180°.
    1. Sudut yang besarnya antara 0° dan 90° disebut sudut lancip.
    2. Sudut yang besarnya antara 90° dan 180° disebut sudut tumpul.
    3. Sudut yang besarnya lebih dari 180° dan kurang dari 360° disebut sudut refleks.

Hubungan Antarsudut (Pelurus, Penyiku, dan Bertolak Belakang)

Pasangan Sudut yang Saling Berpelurus (Bersuplemen) 
Perhatikan gambar di bawah.
Garis AB merupakan garis lurus, sehingga besar AOB = 180°. Pada garis AB, dari titik O dibuat garis melalui C, sehingga terbentuk AOC dan BOC.
AOC merupakan pelurus atau suplemen dari BOC. Demikian pula sebaliknya, BOC merupakan pelurus atau suplemen AOC, sehingga diperoleh:

AOC + BOC = AOB
a° + b° = 180°
atau dapat ditulis:
a° = 180° – b° atau
b° = 180° – a°. 

Dari uraian di atas dapat disimpulkan sebagai berikut. Jumlah dua sudut yang saling berpelurus (bersuplemen) adalah 180°. Sudut yang satu merupakan pelurus dari sudut yang lain.
Contoh Soal
Perhatikan gambar di bawah ini. 
 
Hitunglah nilai a° dan tentukan pelurus dari sudut a°.
Penyelesaian:
Berdasarkan gambar diperoleh bahwa
3a° + 2a° = 180°
5a° = 180°
a° = 180°/5
a° = 36
Pelurus sudut a° = 180° – 36° = 144°.
Pasangan Sudut yang Saling Berpenyiku (Berkomplemen) 
Perhatikan gambar di bawah ini.
Pada gambar di atas terlihat PQR merupakan sudut siku-siku, sehingga besar PQR = 90°. Jika pada PQR ditarik garis dari titik sudut Q, akan terbentuk dua sudut, yaitu PQS dan RQS. Dalam hal ini dikatakan bahwa PQS merupakan penyiku (komplemen) dari RQS, demikian pula sebaliknya. Sehingga diperoleh:
PQS + RQS = PQR
x° + y° = 90°,
dengan
x° = 90° – y° dan
y° = 90° – x°. 

Dari uraian di atas dapat disimpulkan sebagai berikut. Jumlah dua sudut yang saling berpenyiku (berkomplemen) adalah 90°. Sudut yang satu merupakan penyiku dari sudut yang lain.
Contoh Soal 
Perhatikan gambar di bawah.
Berdasarkan gambar di atas hitunglah nilai x°; berapakah penyiku sudut x°; dan berapakah pelurus dari penyiku x°?
Penyelesaian:
x° + 3 x° = 90°
4 x° = 90°
x° = 22,5°

penyiku dari x° = 90° - 22,5° = 67,5°

pelurus dari penyiku x° = 180° - 67,5° = 112,5°
Pasangan Sudut yang Saling Bertolak Belakang
Perhatikan gambar di bawah ini. 
 
Pada gambar di atas, garis KM dan LN saling berpotongan di titik O. Dua sudut yang letaknya saling membelakangi disebut dua sudut yang saling bertolak belakang, sehingga diperoleh sudut KON bertolak belakang dengan sudut LOM; dan sudut NOM bertolak belakang dengan sudut KOL. 

Bagaimana besar sudut yang saling bertolak belakang? Agar dapat menjawabnya, perhatikan uraian berikut.
KOL + LOM =  180° (berpelurus)
LOM =  180° – KOL ........................... (i)
NOM + LOM =  180° (berpelurus)
LOM =  180° – MON ......................... (ii)

Dari persamaan (i) dan (ii) diperoleh:
LOM = LOM
180° – KOL = 180° – MON
NOM =KOL
Jadi, besar KOL = besar ∠MON.

 
Sekarang perhatikan uraian berikut.
MON + KON =  180° (berpelurus)
MON =  180° – KON ........................... (a)
MON + LOM =  180° (berpelurus)
MON =  180° – LOM ......................... (b)

Dari persamaan (a) dan (b) diperoleh:
MON = MON
180° – KON = 180° – LOM
LOM =KON
Jadi, besar KON = besar LOM.

Dari uraian di atas dapat disimpulkan sebagai berikut. Jika dua garis berpotongan maka dua sudut yang letaknya saling membelakangi titik potongnya disebut dua sudut yang bertolak belakang. Dua sudut yang saling bertolak belakang adalah sama besar.
Contoh Soal
Perhatikan gambar di bawah ini.
 
Diketahui besar SOP = 45°. Tentukan besar ROQ, SOR, dan POQ.

Penyelesaian:
Diketahui:
SOP = 45°
ROQ = SOP (bertolak belakang)
ROQ = 45°

SOP + SOR = 180° (berpelurus)
45° + SOR = 180°
SOR = 180° – 45°
SOR = 135°

POQ = SOR (bertolak belakang)
POQ = 135°

Hubungan Sudut Jika Dua Garis Sejajar Dipotong Garis

Sudut-Sudut Sehadap dan Berseberangan
Sekarang coba perhatikan gambar di bawah ini.
Pada gambar di atas, garis m // n dan dipotong oleh garis l. Titik potong garis l terhadap garis m dan n berturut-turut di titik P dan titik Q. Pada gambar di atas, tampak bahwa sudut P2 dan sudut Q2 menghadap arah yang sama. Demikian juga sudut P1 dan sudut Q1, sudut P3 dan sudut Q3, serta sudut P4 dan sudut Q4. Sudut-sudut yang demikian dinamakan sudut-sudut sehadap. Sudut sehadap besarnya sama.
Jika dua buah garis sejajar dipotong oleh garis lain maka akan terbentuk empat pasang sudut sehadap yang besarnya sama. Jadi, dapat dituliskan
P1 sehadap dengan Q1 dan P1 = Q1;
P2 sehadap dengan Q2 dan P2 = Q2;
P3 sehadap dengan Q3 danP3 = Q3;
P4 sehadap dengan Q4 dan P4 = Q4.
Contoh soal dan Pembahasan tentang Sudut-Sudut Sehadap
Perhatikan gambar di bawah ini.
a. Sebutkan pasangan sudut-sudut sehadap.
b. Jika besar K1 = 102°, tentukan besar
  1. L1;
  2. K2;
  3. L2.
Penyelesaian
a. Berdasarkan gambar di samping diperoleh
K1 sehadap dengan L1
K2 sehadap dengan L2
K3 sehadap dengan L3
K4 sehadap dengan L4
b. JikaK1 = 102° maka
  1.  L1 = K1 (sehadap) = 102°
  2. K2 = 180° – K1 (berpelurus) = K2 = 180° – 102° = K2 = 78°
  3. L2 = K2 (sehadap) = L2 = 78o

Sekarang perhatikan gambar di bawah ini. 
 
Pada gambar tersebut besar P3 = Q1 dan P4 = sudut Q2. Pasangan sudut P3 dan sudut 1, serta sudut P4 dan sudut Q2 disebut sudut-sudut dalam berseberangan. Jika dua buah garis sejajar dipotong oleh garis lain, besar sudut-sudut dalam berseberangan yang terbentuk adalah sama besar.
Sekarang perhatikan pasangan sudut P1 dan sudut Q3, serta sudut P2 dan sudut Q4. Pasangan sudut tersebut adalah sudut-sudut luar berseberangan, di mana sudut P1 = sudut Q3 dan sudut P2 = sudut Q4. Jika dua buah garis sejajar dipotong oleh garis lain maka besar sudut-sudut luar berseberangan yang terbentuk adalah sama besar.
Contoh soal dan Pembahasan tentang Sudut-Sudut Berseberangan
 
Perhatikan gambar di atas.
a. Sebutkan pasangan sudut- sudut dalam berseberangan.
b. Jika A1 = 75°, tentukan besar: A2; A3; dan B4.
Penyelesaian:
a. Pada gambar di atas diperoleh
A1 dalam berseberangan dengan B3;
A2 dalam berseberangan dengan B4.
b. Jika A1 = 75° maka:
A2 = 180°– sudut A1 (berpelurus)
A2 = 180° – 75°
A2 = 105°
A3 = A1 (bertolak belakang) = 75°
 
B4 = A2 (dalam berseberangan) = 105°

Sudut-Sudut Dalam Sepihak dan Luar Sepihak
Sekarang perhatikan gambar di bawah ini.
 
Perhatikan Gambar di atas. Pada gambar tersebut garis m // n dipotong oleh garis l di titik P dan Q. Perhatikan sudut P3 dan sudut Q2. Kedua sudut tersebut terletak di dalam garis m dan n serta terhadap garis l keduanya terletak di sebelah kanan (sepihak). Pasangan sudut tersebut dinamakan sudut-sudut dalam sepihak.  Dengan demikian diperoleh:
  • P3 dalam sepihak dengan Q2;
  • P4 dalam sepihak dengan Q1.

Sebelumnya telah sudah posting bahwa:
P3 = Q3 (sehadap) dan
P2 = Q2 (sehadap).
Padahal 2 = 180° – P3 (berpelurus), sehingga 
Q2 = P2 = 180° – P3 atau
P3 + Q2 = 180°
Tampak bahwa jumlah P3 dan Q2 adalah 180°.
Jika dua buah garis sejajar dipotong oleh garis lain maka jumlah sudut-sudut dalam sepihak adalah 180°. Dengan cara yang sama, dapat dibuktikan bahwa P4 + Q1 = 180°.
Contoh Soal dan Pembahasan Tentang Sudut-Sudut Dalam Sepihak
 
Pada Gambar di atas, garis p // q dan garis r memotong garis p dan q di titik R dan S.
a. Tentukan pasangan sudut-sudut dalam sepihak.
b. Jika S1 = 120°, tentukan R2 dan R3.
Penyelesaian:
a. Berdasarkan gambar di samping diperoleh
R2 dalam sepihak dengan S1;
R3 dalam sepihak dengan S4.
b. Jika S1 = 120° maka
R2 + S1 = 180° (dalam sepihak)
R2 = 180° – S1
R2 = 180° – 120°
R2 = 60°
R3 =S1 (dalam berseberangan)
R3 = 120°

Sekarang perhatikan gambar di bawah ini.
 
Perhatikan kembali P1 dengan Q4 dan P2 dengan Q3 pada Gambar di atas. Pasangan sudut tersebut disebut sudut-sudut luar sepihak. Akan kita buktikan bahwa: P1 + Q4 = 180°.
 P1 +  P4 = 180o (berpelurus)
Padahal  P4 =  Q4 (sehadap).
Terbukti bahwa  P1 +  Q4 = 180°.
Jika dua buah garis sejajar dipotong oleh garis lain maka jumlah sudut-sudut luar sepihak adalah 180°.

Tidak ada komentar:

Posting Komentar